United States Patent

US009128998B2

(12) 10) Patent No.: US 9,128,998 B2
Jackson, Jr. (45) Date of Patent: Sep. 8, 2015
(54) PRESENTATION OF DATA OBJECT 7,103,600 B2 9/2006 Mullins
HIERARCHIES 7,366,723 B2 4/2008 Shaburov
8,051,105 B1 11/2011 Johnson
(76) Inventor: Robert Lewis Jackson, Jr., Beitar Illit gjg%:gg; gé gggg ;(;rhlr(ls;nal'
(IL) 8,832,111 B2 92014 Venkataramani et al.
8,978,010 Bl 3/2015 Thumfart et al.
(*) Notice: Subject. to any disclaimer,. the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/226,270 “Using Hibernate in a Java Swing Application,” product tutorial
retrieved from website http://netbeans.org/kb/docs/java/hibernate-
(22) Filed: Sep. 6, 2011 java-se html (12 pgs).
“View (database),” retrieved from Wikipedia at http://en. wikipedia.
(65) Prior Publication Data org/wili/View_ (database) (3 pgs).
“Welcome to the dbViz, Database Visualizer project!” retrieved from
US 2012/0059857 Al Mar. 8, 2012 website http://jdbv.sourceforge.net/dbViz/.
T. Sentissi, E. Pichat, “A graphical user interface for object-oriented
Related U.S. Application Data database,” scce, pp. 227, 17th International Conference of the Chil-
. . ean Computer Science Society (SCCC *97), 1997.
(60) Provisional application No. 61/380,060, filed on Sep.
3,2010. (Continued)
(51) Int.ClL Primary Examiner — Usmaan Saeed
GOG6F 7/00 (2006.01) Assistant Examiner — Paul Kim
GO6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Edward J. Radlo; Radlo IP
(52) US.CL Law Group
CPC GO6F 17/30589 (2013.01); GOGF 17/30327
(2013.01); GOGF 17/30572 (2013.01) 67 ABSTRACT
(58) Field of Classification Search Systems and methods for use in presenting a hierarchy of data
CPC e, GOGF 17/30327; GOGF 17/30589; objects. Data objects in a hierarchy are each associated with a
GOG6F 17/30572 node type of a plurality of node types. A graphical represen-
USPC s 707/797 tation of the hierarchy is created. The graphical representa-
See application file for complete search history. tion includes including a plurality of strata corresponding to
the plurality of node types. A plurality of tree nodes repre-
(56) References Cited P v P P $/ P

U.S. PATENT DOCUMENTS

5,749,079 A 5/1998 Yong et al.
6,105,018 A 8/2000 Demers et al.
6,175,836 Bl 1/2001 Aldred
6,377,287 Bl 4/2002 Hao et al.
6,567,802 Bl 5/2003 Popaetal.
6,763,361 Bl 7/2004 Poskanzer
6,772,180 Bl 8/2004 Li et al.
6,801,905 B2 10/2004 Andrei

senting the data objects is created. Each tree node is associ-
ated with the node type that corresponds to the associated data
object. The tree nodes associated with the node type that
corresponds to the stratum are included in each stratum of the
plurality of strata. The graphical representation may include
hierarchical connectors extending between the tree nodes and
representing hierarchical relationships between the data
objects represented by the tree nodes.

2 Claims, 14 Drawing Sheets

US 9,128,998 B2
Page 2

(56)

8,983,898
2003/0065527
2003/0115545
2004/0181554
2004/0215649
2004/0249809
2005/0251371
2006/0015588
2006/0253476
2007/0180408
2008/0056572
2008/0294641
2009/0080853
2009/0094217
2009/0175543
2009/0182837
2009/0296568
2010/0214313
2011/0270606
2012/0229466
2013/0174129
2013/0325864
2014/0304214

References Cited

U.S. PATENT DOCUMENTS

Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

3/2015
4/2003
6/2003
9/2004
*10/2004
12/2004
11/2005
1/2006
11/2006
*8/2007
3/2008
11/2008
3/2009
4/2009
7/2009
7/2009
12/2009
8/2010
11/2011
9/2012
7/2013
12/2013
10/2014

Alfonseca et al.
Yeh et al.

Hull et al.
Heckerman et al.
Whalen etal. 707/102
Ramani et al.
Chagoly et al.
Achlioptas et al.
Roth et al.
Rusuetal.ccoceevennnnne 715/855
Nielsen

Kim

Chen et al.
Dettinger et al.
Nielsen

Rogers

Kitada

Herman et al.
Crochet et al.
Riche et al.
Grammel et al.
Sarshar et al.
Sakunkoo et al.

OTHER PUBLICATIONS

P. Sawyer, I. Sommerville, “User interface tools for object-oriented
database systems,” IEE Colloquium on Software Tools for Interface
Design, Nov. 8, 1990, pp. 9/1-9/4, London.

International Search Report and Opinion for co-pending PCT patent
application No. PCT/US2011/050567.

International Preliminary Report on Patentability (PCT/IB/373) and
a Written Opinion of the International Searching Authority (PCT/
ISA/237) dated Mar. 14, 2013 for co-pending International Applica-
tion No. PCT/US2011/050567 (7 pgs).

Kennedy, J. and Barclay, P. (Eds). “Interfaces to Databases (IDS-3)”,
Proceedings of the 3rd International Workshop on Interfaces to Data-
bases, Napier University, Edinburgh, Scotland, Jul. 8-10, 1996, 12
pgs.

“Graph Rewrite Systems for Program Optimization”, Uwe Assmann,
Transactions on Programming Languages and Systems, vol. 22 No.
4, published Jul. 2010, U.S.A.

“Graph-based KNN Text Classification” Zonghu Wang and Zhijing
Liu, Seventh International Conference on Fuzzy Systems and Knowl-
edge Discovery (FSKD 2010). pp. 2363-2366, published by IEEE in
2010, U.S.A.

* cited by examiner

US 9,128,998 B2

Sheet 1 of 14

Sep. 8, 2015

U.S. Patent

DINSQ
oWy
wo.l4/o]

JIAJP OTT
AlOWB|
" SET O¢T
ObT OFT H ST T soepeu
A nduesn ™
| oelRl . b ossedol S e L
| uoneoiuNWwo) | d N TTTILIIoITTo }
............ w ooelsqul '
| uonejussald !
IIIIIIIII JII_
\
221AQq bunndwo) 0ct
\
SOT

['Ol

U.S. Patent Sep. 8, 2015 Sheet 2 of 14 US 9,128,998 B2
' 200
/
225 4235
Database Client
210 manag(_ement device 215
N device -
220
Network
A
Y
Server
205\
Database 530

U.S. Patent Sep. 8, 2015 Sheet 3 of 14 US 9,128,998 B2

FIG. 3 L300

! classification strategy

____________ R

Determine node type associated 310
with data object

More objects?

No

Create graphical representation

| Determine (e.g., receive) 307
|
|

of hierarchy including strata —315
corresponding to node types

Y
Create tree nodes associated | 35

with node types

Y
Position tree nodes in strata
based on corresponding node [—323

types

y
Include hierarchical connectors —330

Y

Graphically distinguish tree | 335
nodes based on node type

!

Provide graphical representation | 344
for presentation

U.S. Patent Sep. 8, 2015 Sheet 4 of 14 US 9,128,998 B2

FIG. 4

U.S. Patent Sep. 8, 2015 Sheet 5 of 14 US 9,128,998 B2

U.S. Patent Sep. 8, 2015 Sheet 6 of 14 US 9,128,998 B2

FIG. 7 200
/

——710

FIG. 8

805 _ -

U.S. Patent

FIG. 9

[UNIVERSITY HOLDINGS [~ 905

900
/

Sep. 8, 2015

Sheet 7 of 14

I TECHNOLOGY

SCIENCES

=]
l--l'm'
ot 5]
-?,-_%-:5:
=1
2 [>X
=
I
L
Q
2| | B
® &
< >
2 3
1_' g
o
o
L [
I
Q
=
L
wn
]
<L
=
o
=
i 15
Ll
—
|_
Z
S g
o |= o
2 ~
T o))
Q
—
s
Ll
3
T)
[aw]
(o]
(o)}

|[COMPUTER SCIENCE|

COMPILERS

US 9,128,998 B2

Ml
R
& 13l

DATABASE

| NON-ACADEMICH— 215

920 —

US 9,128,998 B2

Sheet 8 of 14

Sep. 8, 2015

U.S. Patent

G061 SONIAI1OH ALISYIAINN]
on)_uH_\,_uo<u<-zoz_w
506——IW3AVOY]
0T0T SIONIDS)” |
........... |M [A50TONHDAL]/ |
RHOTHI TSVavIVa — . [3ONTIDS ¥ILNdWOD]”
ey ey —_—— —
_M.*w_wl,qlm,_.@ A vivd| — — — — — — = =[35vavivq 0101~ \),
OVIHOLNI VWOIN — — — — _—— ~ ; 0101
[3S3UNLT 00983 — — (S VAV —[SETTIdNGT SILLINVINNH
[3STIRd] S SISVNONV T
3 STEMONN SSO0N TiEevE — — — — — [HoNTad”
/
..... /
[3S3S0oY3XT| — ——[3AIHOYV]—[aV1 TOTA
(AOEING— —
— 7 7 "syooe | sadvL O3adiA JUYM140S SIRNO0DILYD Svauv
\\ S00T S00T S00T G00T
ot 0T 'OI

US 9,128,998 B2

Sheet 9 of 14

Sep. 8, 2015

U.S. Patent

G06—[SONITTOH ALISYIAINA]
¢ 16—12IW3AVOV-NONI/

016 JIWIAYOV
SIDONIDS]” \
............ [ADOTONHD31]”
[MOJHIFSVEVIVA— [EONGD5 wdindwWodl’ |
BN VY] — — — — — — —[Sovwd- — !
[(VINOLNL VWOINT— — . — - ~
a SFENIA00955 — R SERIen) |
Yy — == [SITLINVIWNNH]
BvAvv— — SIOVNONV I/
. psIsnEg— — \
FOym— — — = =[N — __
ESEMON __[stiwa av1 rored), |/
CIOEI AVIAzvd— ~_ {3008 18dve— _—[HONTH
[HINTHI ASVH A7) — —
R TGVIIVAV QIMOuN08 QIAYISTY QaIDONdISTd San0o9aLvD SYTuY
oo:\\ GOTT GOTT GOTT GQOTT

U.S. Patent Sep. 8, 2015 Sheet 10 of 14 US 9,128,998 B2
N
—i S
(9]
» i
O
Yot
L
| B o =
i i%' e 1ot
s ! 2 2l i
N i] 1O T
~ | Iml DI<Z: m
\: e IFLS Ig
Sy
gl I Eild S
of i<] =
o I&J:U: L — 121
] il
3 ! fid e
=~ | =] et |8|
h I |2|'_I'm =
Vi o | EiEd E
[fa'd] 1 |:O: 'o'
mé: |§| |'§I||2||Q| |§|
% 5B 5
“\' ! o
! o
! I
Qi =
oSt =
o~ o
| !
gi 2l
= = e el
i > £ o 1S
al E 'm! I_U_”;E\JI
" >~
L)
) m < & o
3| =S = || B
T — <
E| & > El = g5 =
3 1 =) Sl [a)
) o
2 % = |
o w0 Q| |w —
IRl 315 =
I ElS2lE2 S i
ﬁ Q2o [= O || 6 o
=l =<2 e | Z| 9] O] 6
g || |=||S) i <
| E22 || g| El >
1SS =L A | o
x| 3| | | =
<l 5 | |

US 9,128,998 B2

U.S. Patent Sep. 8, 2015 Sheet 11 of 14

FIG. 13

— —
~

o
—
~ ~
P HISTORY] [BIOLOGY ~
- | ~
A _A'K \|GEOI\I/IETRY >
T _\T/ — 7/

A

ENGLISH
1305—5 __ g N
/; : \
\\\ \“‘_——r/// /I\/
S FRENCH‘ Il ALGEBRA ll>
" \[CREMISTRY|/ Nt
1310 N~ N

\
[~ l\\ —_— N — \ /
SCIENCE MP/«TH

A\

LANGUAGE |
~ | |

~ A
HUMANITIES

N
N
N
Y
N
AN

Ve
I
rd
Ve
7/
~ I
N1/

LOWER YEARS

I

I

i

I s
|

|

!

US 9,128,998 B2

Sheet 12 of 14

Sep. 8, 2015

U.S. Patent

U.S. Patent Sep. 8, 2015 Sheet 13 of 14 US 9,128,998 B2

FIG. 15
1505 1525
1510 — RED é
1520— BLUE 1530 1515
FIG. 16
/—1605
SUBTREE 1
1505
RED
1515
BLUE
SUBTREE 2
FIG. 17
PRIOR PORTIONS
OF THE TREE
1710 1515
BLUE r
\ SUBTREE T
|
RED t~ 1705
1505 |
| |

U.S. Patent Sep. 8, 2015 Sheet 14 of 14 US 9,128,998 B2
FIG. 18
‘////—1800
1810
HI K
|
KB I
|
1820
D A G (F
| | | |
FIG. 19
/1900
Hi K
I B

1905

US 9,128,998 B2

1
PRESENTATION OF DATA OBJECT
HIERARCHIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/380,060, filed 3 Sep. 2010, which is
hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates generally to
data presentation and, more specifically, to systems and meth-
ods for use in presenting stratified trees that include nodes
from a hierarchy of data objects in stratified areas.

At least some known software applications present data
objects as nodes in a tree structure that represents a hierarchi-
cal relationship between the data objects. Notably, such a
presentation technique provides a user with only one perspec-
tive that is based on the object hierarchy. Known software
applications do not group tree nodes by type, such that both
hierarchical relationships and type relationships are pre-
sented. Rather, hierarchical relationships and type relation-
ships are generally conveyed by separate presentations.

BRIEF DESCRIPTION OF THE INVENTION

This Brief Description is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Brief Description is
not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used as an
aid in determining the scope of the claimed subject matter.

In one aspect, a method for presenting a hierarchy of data
objects is provided. The method includes determining for
each data object in the hierarchy, by a computing device, an
associated node type to create a plurality of node types. The
computing device creates a graphical representation of the
hierarchy including a plurality of strata corresponding to the
plurality of node types, and also creates a plurality of tree
nodes representing the data objects. Each tree node is asso-
ciated with the node type that corresponds to the associated
data object. The computing device further includes in each
stratum of the plurality of strata the tree nodes associated with
the node type that corresponds to the stratum and provides the
graphical representation of the hierarchy for presentation to a
user.

In another aspect, a device including a memory for storing
a hierarchy of data objects and a processor coupled to the
memory is provided. Each data object is associated with a
node type of a plurality of node types. The processor is pro-
grammed to create a graphical representation of the hierarchy
including a plurality of strata corresponding to the plurality of
node types, and to create a plurality of tree nodes representing
the data objects. Each tree node associated with the node type
that corresponds to the associated data object. The processor
is also programmed to include in each stratum of the plurality
of strata the tree nodes associated with the node type that
corresponds to the stratum, and to include in the graphical
representation hierarchical connectors extending between the
tree nodes. The hierarchical connectors represent hierarchical
relationships between the data objects represented by the tree
nodes.

In yet another aspect, one or more non-transitory com-
puter-readable media having computer-executable instruc-
tions embodied thereon are provided. When executed by at

10

15

20

25

30

35

40

45

50

55

60

65

2

least one processor, the computer-executable instructions
cause the processor to: determine a node type that is associ-
ated with each data object in a hierarchy of data objects to
create a plurality of node types; to create a graphical repre-
sentation of the hierarchy including a plurality of strata cor-
responding to the plurality of node types; to create a plurality
of tree nodes representing the data objects, each tree node
associated with the node type that corresponds to the associ-
ated data object; to include in each stratum of the plurality of
strata, by the computing device, the tree nodes associated
with the node type that corresponds to the stratum; and to
include in the graphical representation hierarchical connec-
tors extending between the tree nodes. The hierarchical con-
nectors represent hierarchical relationships between the data
objects represented by the tree nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments described herein may be better under-
stood by referring to the following description in conjunction
with the accompanying drawings.

FIG. 1 is a block diagram of an exemplary computing
device.

FIG. 2 is block diagram of an exemplary computing system
that includes a server, a database management device, and a
client device.

FIG. 3 is a flowchart of an exemplary method for use in
presenting a hierarchy of data objects.

FIG. 4 is an exemplary user interface for presenting a base
view of a hierarchy of data objects.

FIG. 5 is an exemplary user interface for presenting a
graphical representation of a hierarchy of data objects.

FIG. 6 is an exemplary user interface for presenting a
graphical representation of a hierarchy of data objects in
which tree nodes are positioned between child tree nodes.

FIG. 7 is an exemplary user interface for presenting a
graphical representation of a hierarchy of data objects with
evenly spaced tree nodes in each stratum.

FIG. 8 is an exemplary user interface for presenting a
graphical representation of a hierarchy of data objects as a
grid tree.

FIG. 9 is an exemplary user interface for presenting a base
view of a hierarchy of university holdings.

FIG. 10 is an exemplary user interface for presenting a
hierarchy of university holdings as a tree stratified by media
type.

FIG. 11 is an exemplary user interface for presenting a
hierarchy of university holdings as a tree stratified by avail-
ability.

FIG. 12 is an exemplary user interface for presenting a
hierarchy of university holdings as a tree stratified by media
type with emphasis on a hierarchical structure.

FIG. 13 is a user interface for presenting a hierarchy of
education courses using arced strata.

FIG. 14 is an exemplary user interface for presenting a
hierarchy of education courses using strata conformed to the
shape of an image.

FIG. 15 is an illustration of a first node in a first stratum, a
second node in a second stratum, and a sub-tree T.

FIG. 16 is an illustration of a first sub-tree and a second
sub-tree positioned between the first node and second node
shown in FIG. 15.

FIG. 17 is an illustration of a hierarchical connector being
drawn between the first node and second node shown in FIG.
15.

FIG. 18 is a user interface including hierarchical connec-
tors drawn by a first exemplary drawing algorithm.

US 9,128,998 B2

3

FIG. 19 is a user interface including hierarchical connec-
tors drawn by a second exemplary drawing algorithm.

DETAILED DESCRIPTION OF THE INVENTION

The embodiments described herein enable the presentation
of data objects based on both hierarchical and type (e.g.,
attribute-related) relationships. In exemplary embodiments,
tree nodes representing the data objects are positioned in
strata based on node types associated with the tree nodes, and
hierarchical connectors extend between tree nodes, indicat-
ing hierarchical relationships between the represented data
objects. Node types may be determined based on a user-
selectable classification strategy, such as grouping by a par-
ticular aspect and/or attribute of the data objects.

An exemplary technical effect of the methods, systems,
and apparatus described herein includes at least one of (a)
determining for each data object in the hierarchy, by a com-
puting device, an associated node type to create a plurality of
node types; (b) creating, by the computing device, a graphical
representation of the hierarchy including a plurality of strata
corresponding to the plurality of node types; (c) creating, by
the computing device, a plurality of tree nodes representing
the data objects, each tree node associated with the node type
that corresponds to the associated data object; (d) including in
each stratum of the plurality of strata, by the computing
device, the tree nodes associated with the node type that
corresponds to the stratum; (e) including in the graphical
representation hierarchical connectors extending between the
tree nodes, wherein the hierarchical connectors represent
hierarchical relationships between the data objects repre-
sented by the tree nodes; and (f) providing the graphical
representation of the hierarchy for presentation to a user.

FIG. 1 is a block diagram of an exemplary computing
device 105. Computing device 105 includes a memory device
110 and a processor 115 coupled to memory device 110 for
executing instructions. In some embodiments, executable
instructions are stored in memory device 110. Computing
device 105 is configurable to perform one or more operations
described herein by programming processor 115. For
example, processor 115 may be programmed by encoding an
operation as one or more executable instructions and provid-
ing the executable instructions in memory device 110. Pro-
cessor 115 may include one or more processing units (e.g., in
a multi-core configuration).

Memory device 110 is one or more devices that enable
information such as executable instructions and/or other data
to be stored and retrieved. Memory device 110 may include
one or more computer readable media, such as, without limi-
tation, dynamic random access memory (DRAM), static ran-
dom access memory (SRAM), a solid state disk, and/or a hard
disk. Memory device 110 may be configured to store, without
limitation, a hierarchy of data objects, node types, available
classification strategies, computer-executable instructions,
and/or any other type of data.

In some embodiments, computing device 105 includes a
presentation interface 120 that is coupled to processor 115.
Presentation interface 120 presents information, such as data
objects and/or classification strategies, to a user 125. For
example, presentation interface 120 may include a display
adapter (not shown in FIG. 1) that may be coupled to adisplay
device, such as a cathode ray tube (CRT), a liquid crystal
display (LCD), an organic LED (OLED) display, and/or an
“electronic ink” display. In some embodiments, presentation
interface 120 includes one or more display devices. In addi-

15

20

25

40

45

4

tion to, or in the alternative, presentation interface 120 may
include an audio output device (e.g., an audio adapter and/or
a speaker) and/or a printer.

In some embodiments, computing device 105 includes an
input interface 130, such as a user input interface 135 or a
communication interface 140. Input interface 130 may be
configured to receive any information suitable for use with
the methods described herein.

In exemplary embodiments, user input interface 135 is
coupled to processor 115 and receives input from user 125.
User input interface 135 may include, for example, a key-
board, a pointing device, a mouse, a stylus, a touch sensitive
panel (e.g., a touch pad or a touch screen), a gyroscope, an
accelerometer, a position detector, and/or an audio input
interface (e.g., including a microphone). A single component,
such as a touch screen, may function as both a display device
of presentation interface 120 and user input interface 135.

Communication interface 140 is coupled to processor 115
and is configured to be coupled in communication with one or
more remote devices, such as another computing device 105.
For example, communication interface 140 may include,
without limitation, a wired network adapter, a wireless net-
work adapter, and/or a mobile telecommunications adapter.
Communication interface 140 may also transmit data to one
ormore remote devices. For example, a communication inter-
face 140 of one computing device 105 may transmit an indi-
cation of one or more source code portions of interest and/or
one or more execution events to the communication interface
140 of another computing device 105.

FIG. 2 is block diagram of an exemplary system 200
including a server 205, a database management device 210,
and a client device 215 coupled in communication via a
network 220. Network 220 may include, without limitation,
the Internet, a local area network (LAN), a wide area network
(WAN), a wireless LAN (WLAN), a mesh network, and/or a
virtual private network (VPN). While certain operations are
described below with respect to particular computing devices
105, it is contemplated that any computing device 105 may
perform any portion or the entirety of the described opera-
tions.

In exemplary embodiments, server 205, database manage-
ment device 210, and client device 215 are computing devices
105 (shown in FIG. 1). Each computing device 105 is coupled
to network 220 via a communication interface 140 (shown in
FIG. 1). In an alternative embodiment, server 205 is inte-
grated with database management device 210 and/or with
client device 215.

Server 205 stores data that is accessible by client device
215. In some embodiments, server 205 executes a database
230 that stores data in a structured format, such as tables with
aplurality of columns and rows. In such embodiments, server
205 receives and responds to requests from database manage-
ment device 210 and client device 215, as described in more
detail below. In addition, or alternatively, server 205 may
provide data to client device 215 from a source other than
database 230. For example, server 205 may transmit files
stored at server 205 or some other device to client device 215.
As another example, server 205 may execute a software appli-
cation, such as a web service, that provides data to client
device 215.

Database management device 210 interacts with a database
administrator 225 (e.g., via user input interface 135 and/or
presentation interface 120). For example, database manage-
ment device 210 may be configured to receive database
schema data, such as definitions of tables and/or columns in a
relational database, from database administrator 225. Data-
base management device 210 transmits the schema data to

US 9,128,998 B2

5

server 205 via network 220. Server 205 receives and applies
the schema data to database 230.

Client device 215 interacts with a user 235 (e.g., via user
input interface 135 and/or presentation interface 120). For
example, client device 215 may acquire and/or receive data
objects provided by database 230 (e.g., product data, media
data, education data, and/or any other type of data) and
present such data to, user 235. For example, client device 215
may present data in stratified trees, as described in more detail
below. Further, client device 215 may receive data from user
235 and submit the data to server 205, such that database 230
is updated with the submitted data.

In some embodiments, client device 215 is remote to server
205. For example, client device 215 may be located at a
facility that is geographically removed from server 205 and/
or database management device 210. Further, although client
device 215 is described above as receiving data from server
205 and presenting the received data to user 235, in some
embodiments, client device 215 presents data that is stored at
clientdevice 215. For example, client device 215 may execute
database 230 and/or access data stored in one or more files at
client device 215.

FIG. 3 is a flowchart of an exemplary method 300 for use in
presenting a hierarchy of data objects. Portions of method 300
may be performed, for example, using any one of or any
combination of computing devices 105 in system 200 (shown
in FIG. 2).

In some embodiments, a computing device 105 provides
305 abase view of a hierarchy of data objects for presentation
to a user. FIG. 4 is an exemplary user interface 400 for
presenting a base view of a hierarchy of data objects. User
interface 400 is provided herein to illustrate the hierarchy
shown in FIGS. 5-8 and is optionally provided 305 for pre-
sentation to a user. In some embodiments, user interface 400
is not provided 305 by computing device 105.

User interface 400 includes a plurality of tree nodes 405,
each of which represents a data object in the hierarchy. For
example, the hierarchy may include media (e.g., books and/or
videos), education courses in a course catalog, personnel in a
chain of command, and/or any other hierarchically organized
data objects.

Each tree node 405 is associated with zero or one “parent”
nodes representing data objects above the tree node 405 in the
hierarchy, and zero or more “child” nodes representing data
objects below the tree node 405 in the hierarchy. In exemplary
embodiments, the positions of tree nodes in user interface 400
correspond to the positions of the represented data objects in
the hierarchy. For example, the root object of the hierarchy,
which has no parents and is considered to be at the top of the
hierarchy, is represented by a root node 410 positioned above
all other tree nodes 405. Alternatively, instead of being pre-
sented as the top-most tree node 405, root node 410 may be
presented as the left-most tree node 405 or at any extreme of
user interface 400.

The root object is associated with two child objects, repre-
sented by a first child node 415 and a second child node 420,
which are positioned below root node 410. Hierarchical con-
nectors 425 extend from root node 410 to first child node 415
and to second child node 420. Similarly, data objects below
first child node 415 and second child node 420 in the hierar-
chy are represented by tree nodes 405 positioned below first
child node 415 and second child node 420 in user interface
400.

Computing device 105 determines 310 for each data object
in the hierarchy an associated node type to create a plurality of
node types. For example, academic media may be classified

10

15

20

25

30

35

40

45

50

55

60

65

6

into types of media format, such as software, video, tapes, and
books, as described in more detail below with reference to
FIG. 10.

Computing device 105 creates 315 a graphical representa-
tion of the hierarchy including a plurality of strata corre-
sponding to the plurality of node types. FIG. 5 is an exem-
plary user interface 500 for presenting a graphical
representation of a hierarchy of data objects. User interface
500 includes a first stratum 505 corresponding to a first node
type, a second stratum 510 corresponding to a second node
type, a third stratum 515 corresponding to a third node type,
and a fourth stratum 520 corresponding to a fourth node type.

Computing device 105 creates 320 a plurality of tree nodes
representing the existing data objects in the hierarchy. Each
tree node is associated with the node type that corresponds to
the associated data object. Computing device 105 positions
325 in each stratum of the plurality of strata the tree nodes
associated with the node type that corresponds to the stratum.
As shown in FIG. 5, for example, a first node 525 and a second
node 530 are included 325 in first stratum 505.

Accordingly, user interface 500 facilitates presenting the
groupings of tree nodes into regions (e.g., strata) by node
type, thereby allowing a user to see all of a specific type of
node easily. In one embodiment, tree nodes are positioned
within user interface 500 by traversing the hierarchy of data
objects depth-first (e.g., by beginning at a deepest level of the
hierarchy), placing tree nodes representing the data objects
into strata of user interface 500 while progressing in a prede-
termined direction (e.g., left to right) in the hierarchy pre-
sented in user interface 400 (shown in FIG. 4). The horizontal
positioning of any node may be adjusted in a predetermined
direction (e.g., to the right) to an extent that allows the node
itself and any hierarchical connector(s) to be drawn without
overlapping any other nodes or hierarchical connectors
already drawn. All nodes of each type may be clearly distin-
guished by placement in discrete strata and optionally graphi-
cally distinguished by node type (as described in more detail
below), providing the effect of a set of lists.

In some embodiments, tree nodes in user interface 500 are
graphically distinguished by node type. Graphical distinction
may be accomplished using a background pattern, a back-
ground color, a line weight, a line color, an icon, an animation,
and/or any other method of visually differentiating user inter-
face elements from one another. For example, tree nodes
associated with a first node type and positioned in first stratum
505 may be presented with a first background pattern, with a
first line pattern, and/or in a first color, whereas tree nodes
associated with a second node type and positioned in second
stratum 510 may be presented with a second background
pattern, with a second line pattern, and/or in a second color.
As shown in FIGS. 4-8, tree nodes are graphically distin-
guished by node type using a background pattern that is
unique to each node type.

In addition to presenting tree nodes by node type, comput-
ing device 105 also presents the hierarchical relationships
between data objects. For example, computing device 105
may include 330 in user interface 500 hierarchical connectors
425, as described above with reference to FIG. 4. Hierarchical
connectors 425 extend between tree nodes and represent hier-
archical relationships between the data objects represented by
the tree nodes.

As shown in FIG. 5, root node 410 corresponds to the
fourth node type and is positioned in fourth stratum 520; first
child node 415 corresponds to the second node type and is
positioned in second stratum 510; and second child node 420
corresponds to the third node type and is positioned in third
stratum 515. Further, computing device 105 includes in user

US 9,128,998 B2

7

interface 500 hierarchical connectors 425 extending between
root node 410 and first child node 415, and between root node
410 and second child node 420.

In exemplary embodiments, computing device 105 empha-
sizes the different strata by graphically distinguishing 335
tree nodes based on the node types associated with the tree
nodes. For example, visually distinct styles may be applied to
the tree nodes of each stratum. As shown in FIG. 5, tree nodes
in first stratum 505 are drawn with a first background pattern,
tree nodes in second stratum 510 are drawn with a second
background pattern, tree nodes in third stratum 515 are drawn
with a third background pattern, and tree nodes in fourth
stratum 520 are drawn with a fourth background pattern.

Computing device 105 provides 340 the graphical repre-
sentation of the hierarchy for presentation to a user. For
example, computing device 105 may directly present a
graphical representation such as user interface 500 via a pre-
sentation interface 120 (shown in FIG. 1) and/or may transmit
the graphical representation via a communication interface
140 (shown in FIG. 1) to another computing device 105 for
presentation.

Various options are available positioning tree nodes within
a graphical representation such as user interface 500. In some
embodiments, hierarchical connectors 425 are drawn as
straight lines, which may overlap and/or be graphically dis-
tinguished from each other. In other embodiments, hierarchi-
cal connectors 425 are drawn as curved and/or angled lines,
such that overlapping of hierarchical connectors 425 may be
avoided, and/or the graphical representation of the data object
hierarchy may occupy a smaller area.

In the embodiment shown in FIG. 5, computing device 105
includes in user interface 500 a boundary 535, which may or
may not be visible, perpendicular to the strata. Computing
device 105 determines a target position associated with each
tree node in user interface 500 and positions each tree node at
the target position. The target position includes a distance
from boundary 535 at which hierarchical connectors 425
extending from the tree node will not intersect any tree node
that is not directly related to the tree node (e.g., any tree node
other than a direct parent and/or direct child of the tree node)
and will not intersect another hierarchical connector 425. For
example, the distance may be determined as the smallest
distance from boundary 535 at which such intersections will
not occur. Optionally, the distance may be determined as a
distance at which hierarchical connectors 425 extending from
the tree node also will not pass within a predetermined dis-
tance (e.g., a “padding” distance) of other tree nodes and/or
other hierarchical connectors 425.

In the embodiment shown in FIG. 5, all nodes are posi-
tioned as far left as possible without allowing tree nodes
and/or hierarchical connectors 425 to intersect other tree
nodes or hierarchical connectors at the time of positioning,
given straight line hierarchical connectors 425. Such an
embodiment facilitates presenting tree nodes within a stratum
as a list, despite the presence of hierarchical connectors 425
extending from the tree nodes within the stratum.

In some embodiments, each tree node is positioned
between (e.g., centered between) the minimum and maxi-
mum positions of all of its children. Such embodiments facili-
tate emphasizing the sub-trees of data objects within the
hierarchy and may be valuable in contexts in which convey-
ing such sub-tree relationships is desired.

FIG. 6 is an exemplary user interface 600 for presenting a
graphical representation of a hierarchy of data objects in
which tree nodes are positioned between child tree nodes. In
user interface 600, the strata extend along an axis 605. Com-
puting device 105 determines a minimum child position and

10

15

20

25

30

35

40

45

50

55

60

65

8

a maximum child position associated with each tree node.
The minimum child position represents a minimum position
on axis 605 at which a child tree node of the tree node is
positioned. The maximum child position represents a maxi-
mum position on axis 605 at which a child tree node of the tree
node is positioned. For example, for root node 410, a left-
most child node 610 is associated with a minimum child
position 615 on axis 605, and a right-most child node 620 is
associated with a maximum child position 625 on axis 605.

Computing device 105 determines a target position asso-
ciated with each tree node between the minimum child posi-
tion and the maximum child position associated with the tree
node, and positions each tree node at the associated target
position. In the example shown in FIG. 6, root node 410 is
positioned at a target position 630 on axis 605 that is between
minimum child position 615 and maximum child position
625. More specifically, target position 630 may be centered
between (e.g., equidistant from) minimum child position 615
and maximum child position 625 associated with root node
410.

In some embodiments, tree nodes are evenly spaced within
each stratum. FIG. 7 is an exemplary user interface 700 for
presenting a graphical representation of a hierarchy of data
objects with evenly spaced tree nodes in each stratum. In user
interface 700, tree nodes within each stratum are spaced from
each other at a predetermined distance 705. To accommodate
the positioning of tree nodes based on predetermined distance
705, user interface 700 includes curved hierarchical connec-
tors 710 that are shaped to avoid intersecting tree nodes that
are not directly related to each tree node and to avoid inter-
secting other hierarchical connectors.

FIG. 8 is an exemplary user interface 800 for presenting a
graphical representation of a hierarchy of data objects in an
arrangement that may be referred to as a “grid tree.” User
interface 800 includes a boundary 805 that is perpendicular to
the strata. Computing device positions the set of tree nodes
within each stratum at a predetermined distance 810 from
boundary 805. Presenting the hierarchy as a grid tree, as
shown in FIG. 8, may be useful in contexts that call for
multiple lists, with the expectation that the underlying tree
may be provided for occasional reference. For example, a
vendor’s site may display products by category, company, etc.
The location of each product in a product hierarchy may be
shown in a tree for the interested viewer, but seldom used.

Some embodiments facilitate presenting a data object hier-
archy according to various types or categories. In such
embodiments, computing device 105 determines 307 a clas-
sification strategy and determines 310 the node type associ-
ated with each data object based on the determined classifi-
cation strategy and/or one or more attributes of the data
object. For example, computing device 105 may determine
307 the classification strategy by identifying a default classi-
fication strategy or a classification strategy previously asso-
ciated with the hierarchy of data objects. In addition, or alter-
natively, computing device 105 may allow a user to select a
classification strategy that is based on one or more attributes
of the data objects in the hierarchy. Referring to FIG. 3, in
such embodiments, computing device 105 determines 307 the
classification strategy by receiving a selection of a classifica-
tion strategy (e.g., via input interface 130).

For illustrative purposes, FIGS. 9-12 demonstrate the pre-
sentation of a hierarchy of university library holdings based
on a user-selectable classification strategy. In such an
example, students accessing a university library system may
explore a library catalog through an interactive interface
using a standard hierarchical tree.

US 9,128,998 B2

9

FIG. 9 is an exemplary user interface 900 for presenting a
base view of a hierarchy ofuniversity holdings. User interface
900 includes a root node 905 representing all university hold-
ings. Root node 905 is positioned at the top left-hand corner
of'user interface 900, and each child node is positioned below
and to the right of a corresponding parent node (e.g., in an
expandable tree arrangement). For example, a first child node
910 corresponding to a node type of “academic” and a second
child node 915 corresponding to a node type of “non-aca-
demic” are shown below and to the right of root node 905.
First child node 910 is expanded, such that child nodes of first
child node 910 are displayed.

In user interface 900, holdings are graphically distin-
guished from each other based on a media type: books (iden-
tified with a “b”), tapes (identified with a “t”), video (identi-
fied with a “v”) and software (identified with an “s). User
interface 900 also includes hierarchical connectors 920 rep-
resenting hierarchical relationships between holdings.
Accordingly, user interface 900 presents holdings primarily
based on hierarchical relationships and represents classifica-
tion into node types (e.g., media type) using graphical dis-
tinction.

FIG. 10 is an exemplary user interface 1000 for presenting
a hierarchy of university holdings as a tree stratified by media
type. Root node 905 is positioned at a corner (e.g., the lower
left-hand corner) of user interface 1000, and child nodes (e.g.,
first child node 910 and second child node 915) representing
objects at each successive level of the hierarchy are posi-
tioned progressively farther from the corner (e.g., above and
to the right of the parent node).

In user interface 1000, the tree nodes shown in FIG. 9 are
positioned in strata 1005 that are presented as vertical col-
umns. In addition, hierarchical connectors 1010 represent the
hierarchical relationships between the data objects repre-
sented by the tree nodes. Accordingly, the user is presented a
simple list of books, tapes, videos and software, in a tabular
format, without losing the benefit of the tree. Color or other
graphical distinction that emphasizes continuity for the strata
1005 allows the user to perceive the tree nodes in each stratum
1005 as a list.

FIG. 11 is an exemplary user interface 1100 for presenting
a hierarchy of university holdings as a tree stratified by avail-
ability. For example, each holding may be classified as avail-
able, reserved, borrowed, or restricted, and this availability
may be considered an attribute of each holding. When the user
selects a classification strategy that distinguishes holdings by
the availability attribute, tree nodes representing the holdings
are positioned in strata 1105 associated with the various avail-
abilities. For example, the same tree nodes that are stratified
by media type in FIG. 10 may be stratified by availability.

FIG. 12 is an exemplary user interface 1200 for presenting
a hierarchy of university holdings as a tree stratified by media
type with emphasis on a hierarchical structure. Root node 905
is positioned at the top left-hand corner of user interface 1200,
similar to the positioning of root node 905 in the base hierar-
chy view of user interface 900 (shown in FIG. 9). Also, as in
user interface 900, each child node is positioned below and to
the right of a corresponding parent node.

Unlike user interface 900, user interface 1200 includes
strata 1205 associated with media types. Each tree node is
positioned in a stratum 1205 based on the media type associ-
ated with the holding represented by the tree node, as in user
interface 1000 (shown in FIG. 10). Accordingly, user inter-
face 1200 emphasizes the tree structure of the hierarchy by
vertically positioning tree nodes based on hierarchical rela-
tionships, while presenting attribute information by horizon-
tally positioning the tree nodes in the various strata 1205.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Such an embodiment may reduce the visual effect of changes
applied to the tree nodes. For example, the addition of a tree
node may simply shift all nodes positioned below the added
node by a constant amount (e.g., the height of one row in user
interface 1200).

Notably, the structure of the trees shown in FIGS. 9-12
remains unchanged, despite the various presentations
described. Rather, the manner in which the tree is drawn
allows distinctions between nodes to be clear to the user.
Further, stratification based on attributes of the nodes allows
additional information to be conveyed. For example, user
interface 1100 presents availability status, which is not shown
in user interfaces 900, 1000, and 1200 (shown in FIGS. 9,10,
and 12, respectively).

The use of varied stratifications allows the user to view the
same data in different ways, as the library catalog example
shows. This may be useful for any application that could
present complex data in tree form. For example, a genealogi-
cal tree could be presented showing all people grouped by
state, country of origin, work sector, education, and/or reli-
gious affiliation. A personnel chart could show department
management hierarchy as a tree, but show all personnel
according to classes of educational degree, and/or by area of
discipline. For instance, all chemical engineers might be
shown distinct from all mechanical engineers, and so on. The
interface to a project could allow files to be grouped in various
ways without compromising the presentation of the underly-
ing file directory tree. For instance, a set of files could be
presented according to software application types, dates
modified, and/or file owners.

Embodiments described above present strata in straight
rows or columns. Other shapes of strata are also contemplated
and may enhance the visual effect and/or interpretation of
presented trees. For example, in some embodiments, strata
are depicted in a curved (e.g., elliptical, circular, ovular,
arced, and/or curvilinear) shape. Such embodiments facilitate
drawing straight hierarchical connectors between nodes in a
stratum without requiring exceptional staggering of the
nodes.

The fact that a stratified tree has segments of the tree
separated already (e.g., by node type) leads to the potential for
projecting the strata onto desired shapes and/or images. When
only one or two strata are presented, elliptical (e.g., circular)
orarced strata may be presented. Elliptical or arced strata may
be useful when distinguishing a selected group of nodes from
unselected nodes based on an attribute of interest. For
example, if the hierarchy represents the management hierar-
chy of a company, elliptical strata may be used to distinguish
a group of managers selected for an annual productivity
award from those not selected. When more than two strata are
presented, the top two strata may be represented in an ellip-
tical or arced form as well.

FIG. 13 is a user interface 1300 for presenting a hierarchy
of education courses using arced strata. User interface 1300
includes a first elliptical stratum 1305 associated with a
“completed” status and a second elliptical stratum 1310 asso-
ciated with a “not completed” status. The tree nodes in first
elliptical stratum 1305 represent courses that have been com-
pleted by a student, and the tree nodes in second elliptical
stratum 1310 represent courses that have not been completed
by a student.

In addition to aesthetic appeal, the use of arced strata
presents all of the nodes in each stratum as equally significant
(e.g., the order of learning is not significant, but all of the
courses are equally important). When the student completes a
course, user interface 1300 may position the corresponding
tree node in first elliptical stratum 1305, optionally graphi-

US 9,128,998 B2

11

cally distinguishing completed courses displayed in first
elliptical stratum 1305 from uncompleted courses displayed
in second elliptical stratum 1310. Accordingly, when all
courses are completed, all the tree nodes representing the
courses may be included in first elliptical stratum 1305.

In some embodiments, the shape of one or more strata is
conformed to a desired shape or image. For example, strata
may be drawn in complex curves, including logos and other
pictures, as long as a user (e.g., an interface designer) or an
automated process specifies the path and/or the boundaries of
each stratum.

Allowing curved lines between the nodes may allow seg-
ments that do not run the full length of the image. In effect,
nodes in one or more portions of a strata could be positioned
where they are desired (e.g., according to a desired spatial
distribution specified by a default setting and/or by a user),
and the hierarchical connectors extending from the nodes
may include one or more vertices and/or be extended in
curves to connect the endpoint nodes without intersecting
other nodes and/or other hierarchical connectors.

FIG. 14 is an exemplary user interface 1400 for presenting
a hierarchy of education courses using strata conformed to the
shape of an image. User interface 1400 includes a logo 1405
in the form of a magnifying glass. A first stratum 1410 and a
second stratum 1415 are defined as being coextensive with at
least a portion of logo 1405. For example, first stratum 1410
is allocated an area in the top portion 1420 of logo 1405, and
second stratum 1415 is allocated an area in the bottom portion
1425 of logo 1405.

Further, a parent node area 1430 is defined coextensive
with a handle portion 1435 of logo 1405. Tree nodes with
child nodes in first stratum 1410 and/or second stratum 1415
are positioned in parent node area 1430. In exemplary
embodiments, areas allocated to first stratum 1410, second
stratum 1415, and parent node area 1430 are received from a
user.

Graphical representations as described herein may be
drawn using various drawing algorithms, which may be itera-
tive or recursive. For simplicity of terminology, the exem-
plary implementation described below assumes that the strata
are drawn vertically. However, the implementation may be
applied to strata drawn horizontally, diagonally, and/or in any
orientation.

An exemplary positioning algorithm capitalizes on the fact
that sub-trees connect to the rest of a tree only through their
root. For example such an algorithm may determine the posi-
tion for each tree node representing a data object in a sub-
hierarchy of the hierarchy to create a sub-tree, and after cre-
ating the sub-tree, determine the positions of tree nodes
representing data objects above the sub-hierarchy in the hier-
archy. Further, the positions of the tree nodes representing
data objects above the sub-hierarchy may be determined at
least in part by determining positions at which hierarchical
connectors extending from the tree nodes will not intersect
the sub-tree.

FIG. 15 is an illustration of a first node 1505 in a first (or
“red”) stratum 1510, a second node 1515 in a second (or
“blue”) stratum 1520, and a sub-tree T 1525. Any sub-tree T
1525 whose root node is on a path 1530 between first node
1505 and second node 1515 will not have hierarchical con-
nectors to any node that is not on path 1530. Therefore, first
node 1505 and second node 1515 can always be placed in first
stratum 1510 and second stratum 1520 in the drawing.

This placement is possible even though the horizontal dis-
tance between first node 1505 and second node 1515 may
need to be increased to allow for any sub-tree T 1525 rooted
on path 1530, as shown in FIG. 16, an illustration of a first

10

15

20

25

30

35

40

45

50

55

60

65

12

sub-tree 1605 and a second sub-tree 1610 positioned between
first node 1505 and second node 1515. There is no concern
that any sub-tree will contain a hierarchical connector to some
node in the rest of the tree, resulting in a need for edges to
intersect or cross over one another in the drawing. Exemplary
positioning algorithms need not pursue such steps explicitly
(and in fact moving all of the nodes before all of the nodes
have been ordered in the rows may not be the most efficient
approach); rather, they may take advantage of this quality of
trees.

Exemplary embodiments capitalize on this fact (that a sub-
tree T only connects to the rest of the tree through the root of
T) using a depth-first traversal of the tree, calculating posi-
tions in the drawing for each node as the node is first visited.
A depth-first traversal is itself of linear growth, and has the
advantage that once a sub-tree T is drawn, no further hierar-
chical connectors will extend to any of its child nodes. There-
fore, hierarchical connectors may be drawn around the por-
tion of the drawing allocated to a certain sub-tree T without
concern that future hierarchical connectors will intersect
them.

FIG. 17 is an illustration of a hierarchical connector 1705
being drawn between first node 1505 and second node 1515.
As shown in FIG. 17, in a depth-first traversal of a data object
hierarchy, a sub-tree 1710 has already been drawn or had an
area allocated to it. Now the traversal is visiting second node
1515, whose parent is first node 1505. Hierarchical connector
1705 extending between first node 1505 and second node
1515 may be drawn around the area allocated to sub-tree 1710
because no subsequently drawn hierarchical connector will
extend to any of the nodes in sub-tree 1710.

As described herein, a depth-first traversal does not neces-
sarily refer to a depth-first traversal of the original data object
hierarchy. Rather, the traversal begins with any node in the
hierarchy, which could be called the drawing root node, as
opposed to the actual root node. For example, in user interface
400 (shown in FIG. 4), root node 410, labeled “A”, is the root
node shown and is the actual root of the presented hierarchy.
The trees shown in FIGS. 5-8 are drawn using the node
labeled “H” as the drawing root node, even though root node
410 remains the root node of the underlying data object hier-
archy.

In exemplary embodiments, the traversal from the drawing
root node treats all hierarchical connectors the same way,
regardless of which node for a hierarchical connector is the
parent node in the actual data object hierarchy. For example,
the node labeled “D” may be a child of the node labeled “H”
in such traversals, even though in the actual hierarchy, H is a
child of D.

In some embodiments, every tree node is placed in aunique
column. Hierarchical connectors, which are also referred to
as “edges” below, are drawn indirectly, looping downward
through the tree. Each hierarchical connector is represented
by two vertical line segments connected by a horizontal line
segment.

The drawing algorithm may be presented with nodes of
uniform size. Alternatively, arrays may be maintained with
column widths and starting points and/or row heights and
starting points. In exemplary embodiments, the drawing algo-
rithm runs in linear time by obviating the need to check for
intersecting hierarchical connectors.

FIG. 18 is a user interface 1800 including hierarchical
connectors drawn by a first exemplary drawing algorithm. For
example, user interface 1800 may be created at least in part by
executing the algorithm shown in Listing 1 below.

US 9,128,998 B2

13

LISTING 1

CreateDrawingTree ()
DRAWINGROOTNODE.edgeDistanceFromBottom < 0
column <« 0
push DRAWINGROOTNODE
do while stack is not empty {
current <= pop
/* draw current */
column-++
current.left <= column * COLUMN_WIDTH
current.top < current.level * ROW_HEIGHT
draw(current , current.left , current.top)
if current = DRAWINGROOTNODE then {
/* draw edge */
current.edgeDistanceFromBottom <
current.parent.edgeDistanceFromBottom — 1
+ current.parent.numberOfChildren
- current.parent.childrenEdgesDrawn
drawedge (current)
current.parent.childrenEdgesDrawn++

/* children of current */
current.childrenEdgesDrawn < 0
for each child in current.children {
child.parent < current
push child
¥
¥

In user interface 1800, the x-coordinate of each of the
vertical line segments 1805 is calculated by offset from the
left edge 1810 of the node in question based upon the total
number of hierarchical connectors 1815 for that node. The
y-coordinate of the horizontal segments 1820 is calculated by
offset from the x-axis (node field edgeDistanceFromBottom)
based upon edgeDistanceFromBottom for the parent and for
the number of children remaining to be drawn for the parent.

FIG. 19 is a user interface 1900 including hierarchical
connectors drawn by a second exemplary drawing algorithm.
For example, user interface 1900 may be created at least in
part by executing the algorithm shown in Listing 2 below.

Listing 2

CreateDrawingTree ()
SetNumberofDescendants() // unique to second alg.
DRAWINGROOTNODE.edgeDistanceFromBottom < 0
column <« 0
push DRAWINGROOTNODE
do while stack is not empty {
current <= pop
/* draw current */
column-++
current.left <= column * COLUMN_WIDTH
current.top < current.level * ROW_HEIGHT
draw(current , current.left , current.top)
if current = DRAWINGROOTNODE then {
/* draw edge */
current.edgeDistanceFromBottom <
current.parent.edgeDistanceFromBottom — 1
+ current.parent.numberOfChildren
- current.parent.childrenEdgesDrawn
drawedge (current)
current.parent.childrenEdgesDrawn++

/* children of current */
current.childrenEdgesDrawn < 0
currentChildren = sortAscending(current,children on
numberOfDescendents) // unique to second alg.
for each child in current.children {
child.parent < current
push child
¥
¥

10

15

20

25

30

35

40

45

50

55

60

65

14

The algorithm shown in Listing 2 is similar to that shown in
Listing 1. Modified or added lines are emphasized with com-
ments indicating that the line is unique to the second algo-
rithm.

Notably, the second exemplary drawing algorithm, sorts
children of the current node by the number of their descen-
dents in the drawn tree and pushes the children onto the stack
in decreasing order. Such an embodiment facilitates ensuring
that children with fewer descendents are drawn closer to
parents than their siblings, potentially resulting in the hierar-
chical connectors being easier to follow visually. The algo-
rithm shown in Listing 1 may be expected to execute in O(n)
time. The algorithm shown in Listing 2 may be expected to
execute in O(n*log(n)) time. Accordingly, one or the other
algorithm may be selected based on the desired appearance of
the tree and/or the desired performance of the positioning
algorithm for a given tree size.

As shown in FIG. 19, user interface 1900 includes less
stacking of horizontal segments 1905 when compared with
user interface 1800 (shown in FIG. 18). Such an algorithm
may be useful in contexts such as a stratified tree of only one
level, such as a generated menu. For example, if the user
hovers over a menu item, the contents of the menu could be
horizontally expanded as a menu bar directly beneath the
main menu bar. Further, such an algorithm may be valuable in
an application that is limited to presenting each node in a
separate column or row, such as an application that presents
folders in a hierarchy and allows the user to see a list of files
beneath every opened folder, and/or a visual database, such as
aphoto collection or personnel directory, that shows an image
or other photo on each row with a clear path showing how
each item is classified. In addition, such an algorithm may be
used in a context involving user interaction in which simple
representation (e.g., less than ten items) that updates quickly
is desired. For instance, a user might select users from a small
group of users on a local network to join in a video phone
conference.

Some embodiments enable truncation of one or more
branches of a tree. For example, a graphical representation of
a hierarchy may present a selected portion of the hierarchy,
such as a list of favorite files. In such a scenario, the graphical
representation may include only the selected nodes and the
set of nodes (e.g., directly related and/or interconnecting
nodes) needed to connect them to one another using hierar-
chical connectors, or alternatively to connect them to the root
of'the hierarchy. In the case of such truncation, a user may be
permitted to click on any node to add its adjacent nodes to the
tree, so that the user could traverse the tree to select new
nodes.

Exemplary Operating Environment

Operations described herein may be performed by a com-
puter or computing device. A computer or computing device
includes one or more processors or processing units and at
least one memory device, such as a system memory and/or
some form of computer-readable media. By way of example
and not limitation, computer-readable media comprise com-
puter storage media and communication media. Computer
storage media are non-transitory and include volatile and
nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion such as computer-readable instructions, data structures,
program modules or other data. Communication media typi-
cally embody computer-readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal such as a carrier wave or other transport mechanism

US 9,128,998 B2

15

and include any information delivery media. Combinations of
any of the above are also included within the scope of com-
puter-readable media.
In exemplary embodiments, any portion or the entirety of
the operations described herein are encoded as computer-
executable instructions, which are embodied on one or more
non-transitory computer-readable media. When executed by
at least one processor, the computer-executable instructions
cause the processor to perform the encoded operations.
Although described in connection with an exemplary com-
puting system environment, embodiments of the invention
are operational with numerous other general purpose or spe-
cial purpose computing system environments or configura-
tions. The computing system environment is not intended to
suggest any limitation as to the scope of use or functionality
of any aspect of the invention.
The methods and systems described herein are not limited
to the specific embodiments described herein. For example,
components of each system and/or steps of each method may
be used and/or practiced independently and separately from
other components and/or steps described herein. In addition,
each component and/or step may also be used and/or prac-
ticed with other apparatus and methods.
When introducing elements of aspects of the invention or
embodiments thereof, the articles “a,” “an,” “the,” and “said”
are intended to mean that there are one or more of the ele-
ments. The terms “comprising,” including,” and “having” are
intended to be inclusive and mean that there may be addi-
tional elements other than the listed elements.
This written description uses examples to disclose the
invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing any
incorporated methods. The patentable scope of the invention
is defined by the claims, and may include other examples that
occur to those skilled in the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not differ from the literal language
of'the claims, or if they include equivalent structural elements
with insubstantial differences from the literal languages of
the claims.
What is claimed is:
1. A computer-implemented method for visually present-
ing, simultaneously in the same graphical representation,
both hierarchical relationships among, and non-hierarchical
type information for, a plurality of data objects, the method
comprising:
determining for each data object an associated node type,
thereby populating a plurality of node types, each node
type corresponding to a single non-hierarchical type;

creating a tree node for each data object, each tree node
identifying the node type of the associated data object;
and

visually presenting in the graphical representation the tree

nodes organized into a set of visually recognizable and
distinguishable strata, each stratum encompassing a dis-
tinct region in the graphical representation correspond-
ing to a single node type irrespective of a node’s hierar-
chical position, said graphical representation presenting
the hierarchical relationships among the tree nodes;
wherein;

10

15

20

25

30

35

40

45

50

55

60

16

in the graphical representation, a plurality of hierarchical
connectors extend between tree node pairs;

the hierarchical connectors represent hierarchical relation-
ships between the data objects represented by the tree
node pairs; and

the graphical representation includes a boundary perpen-
dicular to an axis along which at least some of the strata
are arranged; said method further comprising:

determining a target position associated with each depicted
tree node, wherein the target position takes into account
a pre-selected distance from the boundary, such that
hierarchical connectors extending from the depicted tree
node do not intersect any tree node not directly related to
the depicted tree node and do not intersect any other
hierarchical connector; and

positioning each depicted tree node at its associated target
position.

2. One or more non-transitory computer-readable media
having computer-executable instructions embodied thereon,
wherein when executed by at least one processor, the com-
puter-executable instructions cause the processor to:

determine a non-hierarchical node type associated with
each data object in a hierarchy of data objects, thereby
populating a plurality of node types;

create a graphical representation of the hierarchy, includ-
ing a plurality of visually identifiable and distinguish-
able strata corresponding to the plurality of node types,
while simultaneously preserving and visually display-
ing on the same graphical representation hierarchical
relationships among the data objects, said graphical rep-
resentation comprising:

aplurality of tree nodes representing the data objects, each
tree node representing one data object and visually iden-
tifying the node type corresponding to the associated
data Object;

a plurality of strata visually displaying the tree nodes orga-
nized by node type, each stratum encompassing a dis-
tinct region on the graphical representation correspond-
ing to a single node type irrespective of a node’s
hierarchical position; and

a plurality of hierarchical connectors extending between
pairs of tree nodes, wherein the hierarchical connectors
represent hierarchical relationships between the data
objects represented by the tree node pairs;

wherein the graphical representation includes a boundary
perpendicular to at least a portion of an axis along which
at least some of the strata are arranged, and the computer
executable instructions further cause the processor to:

determine a target position associated with each depicted
tree node, wherein the target position includes a distance
from the boundary at which hierarchical connectors
extending from the depicted tree node do not intersect
any tree node not directly related to the depicted tree
node and do not intersect any other hierarchical connec-
tor; and

position each depicted tree node at its associated target
position.

